Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Cyclopropanation of alkenes with CH₂I₂/Et₃Al by the phase-vanishing method based on fluorous phase screen

Hiroshi Matsubara^{*}, Masaaki Tsukida, Shinji Yasuda, Ilhyong Ryu^{*}

Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

ARTICLE INFO

Article history Received 24 March 2008 Received in revised form 5 June 2008 Accepted 5 June 2008 Available online 14 June 2008

This paper is dedicated to Professor Dennis P. Curran for his great contribution to fluorous chemistry.

Keywords: Fluorous solvent Phase-vanishing Simmons-Smith cyclopropanation Diiodomethane Triethylaluminum

1. Introduction

Fluorous phase chemistry has opened up a new fresh ground in the way of organic synthesis and separation process [1]. Perfluorinated compounds are generally immiscible with most organic solvents and are denser than typical organic molecules. By utilizing the unique properties of fluorous solvents inherent to perfluoroalkyl moieties, we recently reported a synthetically convenient triphasic system [2]: a phase-vanishing (PV) method, in which fluorous solvents, such as FC-72 (perfluorohexanes) and Garden HT-135 (polyperfluoroalkyl ethers), act as a screen phase to connect two separated layers. The PV method is demonstrated to be useful in a variety of situations including: for the bromination of alkenes [3] or at benzylic positions [4] with Br₂, demethylation of methyl ethers [3] with BBr₃, bromination of alcohols [5] with SOBr₂ or PBr₃, and Friedel–Crafts acylation of aromatic compounds [6] with SnCl₄ under mild conditions. The PV method has other variations for example using: chlorine gas [7], lighter reagents [5] than fluorous solvents, and solid reagents [8]. We also introduced a "quadraphasic PV" method [9], in which an aqueous phase was added to the original triphasic PV method to remove acidic by-products.

Diiodomethane (CH_2I_2), a denser liquid (d = 3.33) than FC-72 (perfluorohexanes: d = 1.67), has been used for the Simmons-Smith cyclopropanation reactions as the methylene source [10-

ABSTRACT

Phase-vanishing (PV) method using perfluorohexanes as a screen phase was applied to cyclopropanation reactions with CH₂I₂/Et₂Zn and CH₂I₂/Et₃Al. When Et₃Al was used as a carbenoid generator, the reaction proceeded smoothly and desired cyclopropane derivatives were obtained in high yield. The PV cyclopropanation took 2 or 3 days to complete, however, reduction of reaction time by a factor of 2-3 was also achieved by vigorous stirring after the bottom CH₂I₂ layer disappeared.

alkene

CH₂I₂ d = 3.33

hexane

Et₃Al or Et₂Zn

room temperature

© 2008 Elsevier B.V. All rights reserved.

cyclopropane

Corresponding author. Tel.: +81 72 254 9695; fax: + 81 72 254 9695. E-mail address: ryu@c.s.osakafu-u.ac.jp (I. Ryu).

^{0022-1139/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2008.06.004

Table 1

Control experiments for phase-vanishing cyclopropanation of 1-dodecene

^a Procedure A: gentle stirring, 36 h; Procedure B: vigorous stirring, 4 h.

^b Under dry air atmosphere.

report that a phase-vanishing method can be applied to cyclopropanation reaction of olefins using CH_2I_2/Et_3Al or CH_2I_2/Et_2Zn , which can be conducted at ambient temperature without the need for slow addition of reagents (Scheme 1).

2. Results and discussion

We examined the phase-vanishing cyclopropanation of 1dodecene as a model; the results of this study are summarized in Table 1. Diiodomethane (d = 3.33) was overlaid by FC-72 (d = 1.67), which in turn was overlaid by a hexane solution of 1-dodecene and triethylaluminum. The bottom layer was gently stirred, taking care not to mix the three layers. The diiodomethane layer disappeared after 8 h, giving two layers, however the reaction was not complete at this stage. The reaction took almost 2 days to finish (Procedure A). The organic phase was collected and after column chromatography on silica gel decylcyclopropane was obtained in 78% yield (entry 1, Table 1). In a similar procedure, the use of 2 equivalents of diiodomethane increased the yield to 98% (entry 2, Table 1). In contrast, diethylzinc was not observed to be as effective as triethylaluminum in the PV procedure. With this reagent, while extending reaction time or increasing the molar ratio of diiodomethane did not increase the product yield (entries 4 and 5, Table 1), exposure of the reaction mixture to oxygen slightly

Table 2

Phase-vanishing cyclopropanation of alkenes by Et₃Al/CH₂I₂^a

Entry	Substrate	Procedure	Product	Isolated yield (%) ^b
1	C ₁₀ H ₂₁	А	⊳ _{C10} H ₂₁ 1	98
2	✓ C ₁₀ H ₂₁	В		98
3 ^c		A		98 <i>cis/trans</i> = 2.14/1 ^d
4 ^{c,e}		А		98 <i>cis/trans</i> = 2.12/1 ^d
5		С	3	93
6		C	4	97
7		С	5	99

Table 2 (Continued)

^a General conditions: substrate (1 mmol), CH₂I2 (2 mmol), hexane solution of Et₂Zn or Et₃AI (1 M, 2 mL_), FC-72 (1.5 mL) with aluminum foil protection from light, kept at room temperature with gentle stirring. Procedure A: 36 h; Procedure B: 4 h with vigorous stirring; Procedure C: 58 h; Procedure D: 16 h with vigorous stirring, Isolated yield by silica gel chromatography.

Cis/trans = 2.43/1.d

Determined by ¹H-NMR.

Galden HT-135 (1.5 mL) was used as a fluorous phase.

improved the yield (entry 6, Table 1). In order to reduce the reaction time for the reaction of Et₃Al/CH₂I₂, after the bottom layer had disappeared, the test tube was stirred vigorously for a further 4 h (Procedure B). This modification also gave a good result (entry 3, Table 1).

Encouraged by the excellent adaptability of the Maruoka-Yamamoto cyclopropanation reaction to the PV method, we embarked on experiments with several other alkenes. In each case 2 equiv. of CH₂I₂ and Et₃Al was used (Table 2). In all cases examined, the cyclopropanation reaction took place to give high vields of the desired cyclopropanes. Styrene derivatives required longer reaction times to complete than aliphatic alkenes (Procedure C: with extended reaction time (58 h) after the bottom phase disappeared) (entries 5–9, 11, Table 2). Coupled with the use of vigorous stirring after the bottom layer disappeared, the total reaction time was able to be shortened by a factor of 2-3 (entries 2 and 10, Table 2). Galden[®] HT-135 is a polyether-type perfluorinated solvent, commercially available as a heat transfer liquid (Solvay Solexis Inc.), bp 135 °C, density = 1.72 g/mL at 25 °C, average molecular weight = 610. This inexpensive polyperfluoro ether solvent was shown to function equally as well with FC-72 (entry 4).

$$F_{3}C \xrightarrow{F_{F}} F_{F} F_{F}$$

$$F_{3}C \xrightarrow{F_{F}} F_{CF_{3}} f_{CF_{3}} f_{CF_{3}}$$

$$Galden$$

$$HT-135$$

$$d = 1.72$$

3. Conclusion

Through the use of fluorous media, such as FC-72 (perfluorohexanes) and Garden HT-135, as a phase screen, we have demonstrated that cyclopropanation of alkenes can be easily carried out conveniently without the necessity for slow addition of diiodomethane and equipment for temperature control, which are necessary for the conventional glass-flask reaction. Whereas the Furukawa reagent (Et₂Zn/CH₂I₂) did not function satisfactorily for the present test tube-based triphasic system, the Maruoka-Yamamoto reagent (Et₃Al/CH₂I₂) gave the desired cyclopropanation products in high yields. This carbenoid reagent coupled with

the vigorous stirring of the resulting two layers after the bottom layer disappeared significantly reduced the reaction time.

4. Experimental

FC-72 and Galden[®] HT-135 were purchased from Sumitomo 3 M Ltd., and Solvay Solexis Inc., respectively, and dried over molecular sieves 4 Å before use. Reagents and solvents were used as received. Hexane solution of diethylzinc (1 M) and triethylaluminum (1 M) were purchased from Kanto Chemical Co., Inc., and used as received. Products were purified by column chromatography on silica gel (Kanto Chemical Co., Inc., Silica Gel 60N, 70-230 mesh). ¹H NMR spectra were recorded with a JEOL JMN-500 (500 MHz) or a JEOL IMN-400 (400 MHz) spectrometer while ¹³C NMR spectra were recorded with a IEOL IMN-500 (125 MHz) or a IEOL IMN-400 (100 MHz) spectrometer. Infrared spectra were obtained on a JASCO FT/IR-4100 spectrometer. Conventional and high-resolution mass spectra were recorded with a Shimazu GCMS-QP 5050A instrument and a JEOL MS-700 spectrometer, respectively.

4.1. General procedure for cyclopropanation of olefins by the phasevanishing method (Table 1, entry 2) (Procedure A)

FC-72 (1.5 mL) was placed in a pyrex test tube (13 mm $\phi \times 105$ mm) to which diiodomethane (2.0 mmol, 536 mg) was added slowly using a glass pipette under argon atmosphere. 1-Dodecene (1.0 mmol, 168 mg) was then added slowly, forming three layers. A hexane solution (2 mL) of triethylaluminum (1 M) was added to the top layer, and the test tube was covered with aluminum foil in order to shield the reaction from light and kept it at room temperature. The diiodomethane layer was gently stirred using a magnetic stirrer, taking care not to mix the three layers. The diiodomethane layer disappeared after 8 h, the hexane layer was taken up with a pipette after 44 h. Additional hexane $(3 \text{ mL} \times 4)$ was placed on the residual FC-72 layer, then decanted off. The combined organic layer was washed with aqueous 0.5 M HCl (20 mL) and saturated brine (20 mL), dried over Na₂SO₄, and concentrated. Purification by short column chromatography on silica gel with hexane gave decylcyclopropane (1, 178 mg, 98%) as a colorless oil; IR (neat): v 3000, 2955, 2925, 2850, 1465, 1375, 1040, 1015, 820, 720 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ-0.12 (2H, m, CH₂ of cyclopropane), 0.38 (2H, m, CH₂ of cyclopropane), 0.88 (3H, t, J = 6.9 Hz, CH₃), 1.17 (2H, q, J = 7.4, CH₂-c-C₃H₆), 1.26–1.42 (16H, m, CH₂); ¹³C NMR (125 MHz, CDCl₃): δ 4.35, 10.92, 29.39, 29.54, 59.59, 29.66, 29.69, 29.72, 29.75, 31.96, 33.85, 34.81; EI MS 70 eV, *m/z* (relative intensity): 182 [M]⁺ (10), 168 [M-CH₂]⁺ (13), 154 [M-C₂H₄]⁺ (14), 140 [M-C₃H₆]⁺ (8), 125 (19), 111 (45), 97 (93), 83 (100), 69 (88), 55 (66); HRMS (EI): *m/z* = [M]⁺ calcd for C₁₃H₂₆: 182.2035; found: 182.2036.

All other products **2**[13], **3**[14], **4**[15], **5**[14], **6**[14], **7**[14] and **8**[16] are known compounds and were identified by spectral data with comparison of literature data.

Acknowledgements

We thank JSPS for financial support of this work. We also thank Ms. Sara H. Kyne for useful suggestions on the manuscript.

References

 J.A. Gladysz, D.P. Curran, I.T. Horváth (Eds.), For A General Review of Fluorous Chemistry: Handbook of Fluorous Chemistry, Wiley-VCH, Weinheim, 2004.

- [2] (a) Z. Luo, S.M. Swaleh, F. Theil, D.P. Curran, Org. Lett. 4 (2002) 2585–2587;
 (b) H. Nakamura, B. Linclau, D.P. Curran, J. Am. Chem. Soc. 123 (2001) 10119–10120.
- [3] I. Ryu, H. Matsubara, S. Yasuda, H. Nakamura, D.P. Curran, J. Am. Chem. Soc. 124 (2002) 12946–12947.
- [4] A. Podgoršek, S. Stavber, M. Zupan, J. Iskra, Eur. J. Org. Chem. (2006) 483-488.
- [5] H. Nakamura, T. Usui, H. Kuroda, I. Ryu, H. Matsubara, S. Yasuda, D.P. Curran, Org. Lett. 5 (2003) 1167-1169.
- [6] H. Matsubara, S. Yasuda, I. Ryu, Synlett (2003) 247-249.
- [7] J. Iskra, S. Stavber, M. Zupan, Chem. Commun. (2003) 2496-2497.
- [8] (a) N.K. Jana, J.G. Verkade, Org. Lett. 5 (2003) 3787-3790;
- (b) D.P. Curran, S. Werner, Org. Lett. 6 (2004) 1021–1024.
- [9] Md.T. Rahman, N. Kamata, H. Matsubara, I. Ryu, Synlett (2005) 2664–2666.[10] For leading reviews of the Simmons-Smith reactions.
- (a) H.E. Simmons, T.L. Cairns, S.A. Vladuchick, C.M. Hoiness, Org. React. 20 (1973) 1–131;
- (b) A.B. Charette, A. Beauchemin, Org. React. 58 (2001) 1-415.
- [11] (a) J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron Lett. (1966) 3353–3354;
- (b) J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron 24 (1968) 53–58.
 [12] K. Maruoka, Y. Fukutani, H. Yamamoto, J. Org. Chem. 50 (1985) 4412–4414.
- [12] K. Maruoka, Y. Fukutani, H. Tamanoto, J. Org. Chem. 30 (1983) 4412–4414. [13] E.J. O'Connor, S. Brandt, P. Helquist, J. Am. Chem. Soc. 109 (1987) 3739–3747.
- [13] E.J. O'Connol, S. Blandt, P. Helquist, J. Ani. Chem. Soc. 109 (1987) 5759–5747. [14] J.C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie, Y. Shi, J. Org. Chem. 69 (2004) 327–334.
- [14] J.C. Dirley, J. Dulgy, J. Fang, S. Kat, T. Ale, T. Me, T. Sin, J. Org, Chem. 05 (2004) 527-554.
 [15] J.R.A. Dulayymi, M.S. Baird, I.G. Bolesov, A.V. Nizovtsev, V.V. Tverezovsky, J. Chem. Soc. Perkin Trans. 2 (2000) 1603–1617.
- [16] M.-C. Lacasse, C. Poulard, A.B. Charette, J. Am. Chem. Soc. 127 (2005) 12440-12441.